
Functional PHP
A GLIMPSE INTO THE FUTURE

By Andrew Caya, ZCE, ZCA

 I am Andrew Caya

 Started out with GW-BASIC and QBASIC in 1991

 C, C++ (Qt), Perl

 Linux System Administration

 PHP developer since 2009

 Zend Certified Engineer since 2015

 Zend Certified Architect since 2016

 « Mercenary » developer since 2010 (thanks to Tim Lytle for the term)

 Technical Reviewer for Packt Publishing since 2016

 Upcoming projects :

 Author of a book on the Faster Web (due to be published later this year)

 Creator of Linux for PHP (will be published in a few days from now)

Who am I?

Functional programming

What is all the hype about?

 What is so new about functional programming?

 How does this programming paradigm concern PHP?

 How can it help us on a day to day basis as developers?

Is functional programming

really a new thing?

NOPE!

Let’s start with a glimpse into the past…

 A brief history

 Aristotle (4th Century BC)

A glimpse into the past

Principle of identity – « What is is, what is not is not. »

VALUE – ex. 1

Principle of the excluded middle – « A thing is or is not. »

STATE – ex. $x = 1

Principle of contradiction – « A thing cannot belong and not belong
to the same thing at the same time and in the same respect. »

CONDITIONAL REASONING – ex. if ($x === 1)

 A brief history

 1854 : George Boole’s The Laws of Thought (birth of pure mathematics by applying

Cartesian symbols to Aristotelian logic in order to determine the validity of any statement)

A glimpse into the past

x (1 − x) = 0;

“[…] a class whose members are at the same time men and not men

does not exist.”

 A brief history

 Origin of FP : Lambda calculus (Alonzo Church -1932)

 Mathematicians and logicians were hard at work to develop a logical system in order to help us

formalize the way we describe the world using pure mathematics (Boole’s The Laws of Thought).

 Lambda calculus marks the end of this attempt to describe the world in this way.

 1940s : Birth of effective computation

 Lambda calculus

 Turing machine

 Kurt Godel’s recursive functions

 Haskell Curry’s combinatory logic

A glimpse into the past

“There may, indeed be other applications of the system than its use as a logic.”

Functional programming allowed for

easier effective computation

Functional programming predates

all other major programming

paradigms!

So, why were other paradigms invented?

A question of efficiency

 Declarative (pure functional) vs Imperative

 Declarative programming is value-oriented and is based on expressions and declarations

 Imperative programming is concerned with efficiency rather than suitability of the

language, is state-oriented and is based on the use of statements

Mutually exclusive in the absolute sense

A glimpse into the past

 Functional vs Structural vs Object-Oriented

 Functional programming considers computational design as being based on

mathematical functions, avoids changing state and making data mutable

 Structural programming makes extensive use of subroutines, block structures, for and while

loops

 Object-oriented programming organizes code in easily reusable and maintainable units

called objects.

Not mutually exclusive

A glimpse into the past

 A brief history

 Functional languages (functional hybrids) :

 LISP (1958), ML (1973), Erlang (1986), Scala (2001), F# (ML family) (2005), Clojure (LISP dialect)

(2007)

 Declarative languages (pure functional) :

 Prolog (1972), SQL (1974), Miranda (1985), Haskell (1990), Mercury (1995), Agda (2007)

 Imperative languages (mostly structural and object-oriented paradigms) :

 ALGOL 58 (1958), ALGOL 60 (1960), BASIC (1964), C (1972), C++ (1983), Perl (1987), Python (1990),

PHP (1994), Java (1994), Ruby (1995)

A glimpse into the past

Why are we talking about FP now?

 Modern problems:

 Complex application critical paths (burden for the developer)

 Complexity when unit testing

 Complexity when refactoring legacy code

 Distributed systems

 Parallelization/Multithreading (coming soon to a PHP server near you!)

 Functional programming is the solution to these problems

 Simpler critical paths - Lighten the developer’s burden (1 function = 1 action)

 Easier unit testing

 Avoids ugly stuff like race conditions and application state conflicts
between threads

 Free code optimizations (compiler optimizations and memoization)

 Future performance boosts…

Why are we talking about FP now?

What is functional programming (FP)?

 In computer science, functional programming is a programming
paradigm—a style of building the structure and elements of
computer programs—that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable
data. It is a declarative programming paradigm, which means
programming is done with expressions[1] or declarations[2] instead
of statements.

- Wikipedia, https://en.wikipedia.org/wiki/Functional_programming

 Programming where your entire program is a single referentially
transparent expression composed of other referentially transparent
expressions. No side effects. No mutability. No global mutable state.

- Runar Bjarnason (Functional programmer, @runarorama)

What is FP?

https://en.wikipedia.org/wiki/Functional_programming

Is PHP functional?

 PHP is :

 Imperative in nature

 Structural (procedural)

 Partly object-oriented since PHP 3

What is functional PHP?

 PHP 5.3 … 7.1

 Anonymous functions (lambda functions)

 Generators (infinite lists)

 Functors (not real FP functors though!)

 Anonymous classes

 Variadics

 PHP 7’s strict mode

What is functional PHP?

 Functional PHP libraries

 lstrojny/functional-php

 phpoption/phpoption

 widmogrod/php-functional

 qaribou/immutable.php

 etc.

Most functional programming
patterns and properties are

available in PHP!

What is functional PHP?

Functional programming properties

 Pure functions and referential transparency

 Immutability

 First-class citizen functions

 Higher-order functions

 Function composition (currying)

FP Properties

FP Properties

Pure functions

 Same input, same output

 Evaluation does not cause an

observable side effect or output

(modifying out of scope variables

or any other interaction with I/O

devices for example)

// pure function

function addTwo (int $value) : int

{

return $value + 2;

}

// two side-effects

function addTwo (int $value)

{

global $value = $value + 2;

echo $value;

}

FP Properties

Referential transparency

 Functional expressions and values

must be interchangeable

function addTwo (int $value) : int

{

return $value + 2;

}

4 === addTwo(2); // Interchangeable

function addRandom (int $value) : int

{

return $value + rand();

}

? === addRandom(2); // NOT!

FP Properties

Immutability

 A variable must not change its

value in order to avoid changing

the application’s state from

beginning to end of its runtime

 RFC for PHP 7.2 (immutable

objects)

https://wiki.php.net/rfc/immutability

// Global scope – the right way

$value2 = $value + 1;

// Global scope – the wrong way

$value++;

FP Properties

First-Class Citizen Functions

 Functions must be considered just like any other data type.

 This allows:

 Higher-order functions whereby functions can be passed to and returned by

other functions;

 Function composition whereby functions can be combined in order to

dynamically generate new functions.

FP Properties

function sum($carry, $item)

{

$carry += $item;

return $carry;

}

$total = array_reduce($array, ‘sum’);

Higher-order functions (passing functions)

FP Properties

function curryAdd($a)

{

return function ($b) use ($a) {

return $b + $a;

};

}

$curryAdd2 = curryAdd(2);

$curryAdd3 = curryAdd(3);

$value = $curryAdd2(3); // 5

$value2 = $curryAdd3(3); // 6

Higher-order functions (returning functions and currying)

Functional programming patterns

FP Patterns

 Higher-order function that allows

us to map a callback to each

element of a collection

MAP

$array = [1, 2, 3];

$newArr = array_map(‘addTwo’, $array);

// $newArr === [3, 4, 5];

FP Patterns

 Higher-order function that allows

us to distinguish and keep only

certain elements of a collection

based on a Boolean predicate

FILTER

$array = [1, 2, 3];

$newArr = array_filter($array , ‘odd’);

// $newArr = [1, 3];

FP Patterns

 Higher-order function that allows

us to combine elements of a

collection into a single returned

value based on a combining

function

REDUCE

$array = [1, 2, 3];

$value = array_reduce($array , ‘sum’);

// $value === 6

Let’s look at some code!

Now your code is

pure!

Let’s all go home !

But wait!

I’m trying to do a « Hello

World » program in a

functional programming

style without losing

referential transparency

and purity…

Simple!

Just get rid of the world!

Then, no need to say

hello, right?

Let’s find a more viable solution!

In FP, we can use « monads » to

interact with the world while preserving

purity and referential transparency

What are monads

Monads are a way to encapsulate values that will

remain unknown until runtime while still allowing us

to use them as mappables.

What are monads

Functors

 Pattern allowing us to map a

function to one or more wrapped

values

interface Functor

{

public function map(callable $f) : Functor;

}

What are monads

Applicative

 Pattern allowing us to map a

wrapped function to one or more

wrapped values

Let’s not and say we did… :-)

Ref. :

Functional Programming in PHP

by Simon Holywell

https://www.functionalphp.com/

What are monads

Monad

 Pattern allowing us to map a

wrapped function that returns a

monad of the same type as itself to

one or more wrapped values

abstract class Monad

{

protected $value = null;

public function __construct($value) {

$this->value = $value;

}

public static function pack($value) {

return new static($value);

}

public function map(callable $function) {

return $function($this->value);

}

}

The future is now !

Takeaways

 Try replacing if-else structures, while loops, switches with FP patterns as much as
possible

 Make all dependencies explicit in your function signatures and avoid setter
injection

 Create new variables, don’t modify existing ones (clone objects)

 Using Zend Framework, Symphony or Laravel?

 Try containing your side-effects within your controllers

 Isolate your pure computational code within services and entities

 Create a Doctrine repository in order to encapsulate results in Maybe monads

 Avoid using façades (Laravel)

 Using Drupal?

 Isolate impure code in the main module file

 Using Wordpress?

 Create many files for your plugins and isolate the impure code in one main file

References

 Functional PHP, Gilles Crettenand

https://www.packtpub.com/application-development/functional-php

 Functional Programming in PHP, Second Edition, Simon Holywell

https://www.functionalphp.com/

 Clean Coder, Robert C. Martin (Uncle Bob)

Mr. Martin will be in Montreal, May 17-18

https://sites.google.com/site/unclebobconsultingllc/

https://www.packtpub.com/application-development/functional-php
https://www.functionalphp.com/
https://sites.google.com/site/unclebobconsultingllc/

Thank you!

https://joind.in/talk/3fbb6

Andrew Caya, ZCE, ZCA

@AndrewSCaya

https://ca.linkedin.com/in/andrewscaya

