
Functional PHP
A GLIMPSE INTO THE FUTURE

By Andrew Caya, ZCE, ZCA

 I am Andrew Caya

 Started out with GW-BASIC and QBASIC in 1991

 C, C++ (Qt), Perl

 Linux System Administration

 PHP developer since 2009

 Zend Certified Engineer since 2015

 Zend Certified Architect since 2016

 « Mercenary » developer since 2010 (thanks to Tim Lytle for the term)

 Technical Reviewer for Packt Publishing since 2016

 Upcoming projects :

 Author of a book on the Faster Web (due to be published later this year)

 Creator of Linux for PHP (will be published in a few days from now)

Who am I?

Functional programming

What is all the hype about?

 What is so new about functional programming?

 How does this programming paradigm concern PHP?

 How can it help us on a day to day basis as developers?

Is functional programming

really a new thing?

NOPE!

Let’s start with a glimpse into the past…

 A brief history

 Aristotle (4th Century BC)

A glimpse into the past

Principle of identity – « What is is, what is not is not. »

VALUE – ex. 1

Principle of the excluded middle – « A thing is or is not. »

STATE – ex. $x = 1

Principle of contradiction – « A thing cannot belong and not belong
to the same thing at the same time and in the same respect. »

CONDITIONAL REASONING – ex. if ($x === 1)

 A brief history

 1854 : George Boole’s The Laws of Thought (birth of pure mathematics by applying

Cartesian symbols to Aristotelian logic in order to determine the validity of any statement)

A glimpse into the past

x (1 − x) = 0;

“[…] a class whose members are at the same time men and not men

does not exist.”

 A brief history

 Origin of FP : Lambda calculus (Alonzo Church -1932)

 Mathematicians and logicians were hard at work to develop a logical system in order to help us

formalize the way we describe the world using pure mathematics (Boole’s The Laws of Thought).

 Lambda calculus marks the end of this attempt to describe the world in this way.

 1940s : Birth of effective computation

 Lambda calculus

 Turing machine

 Kurt Godel’s recursive functions

 Haskell Curry’s combinatory logic

A glimpse into the past

“There may, indeed be other applications of the system than its use as a logic.”

Functional programming allowed for

easier effective computation

Functional programming predates

all other major programming

paradigms!

So, why were other paradigms invented?

A question of efficiency

 Declarative (pure functional) vs Imperative

 Declarative programming is value-oriented and is based on expressions and declarations

 Imperative programming is concerned with efficiency rather than suitability of the

language, is state-oriented and is based on the use of statements

Mutually exclusive in the absolute sense

A glimpse into the past

 Functional vs Structural vs Object-Oriented

 Functional programming considers computational design as being based on

mathematical functions, avoids changing state and making data mutable

 Structural programming makes extensive use of subroutines, block structures, for and while

loops

 Object-oriented programming organizes code in easily reusable and maintainable units

called objects.

Not mutually exclusive

A glimpse into the past

 A brief history

 Functional languages (functional hybrids) :

 LISP (1958), ML (1973), Erlang (1986), Scala (2001), F# (ML family) (2005), Clojure (LISP dialect)

(2007)

 Declarative languages (pure functional) :

 Prolog (1972), SQL (1974), Miranda (1985), Haskell (1990), Mercury (1995), Agda (2007)

 Imperative languages (mostly structural and object-oriented paradigms) :

 ALGOL 58 (1958), ALGOL 60 (1960), BASIC (1964), C (1972), C++ (1983), Perl (1987), Python (1990),

PHP (1994), Java (1994), Ruby (1995)

A glimpse into the past

Why are we talking about FP now?

 Modern problems:

 Complex application critical paths (burden for the developer)

 Complexity when unit testing

 Complexity when refactoring legacy code

 Distributed systems

 Parallelization/Multithreading (coming soon to a PHP server near you!)

 Functional programming is the solution to these problems

 Simpler critical paths - Lighten the developer’s burden (1 function = 1 action)

 Easier unit testing

 Avoids ugly stuff like race conditions and application state conflicts
between threads

 Free code optimizations (compiler optimizations and memoization)

 Future performance boosts…

Why are we talking about FP now?

What is functional programming (FP)?

 In computer science, functional programming is a programming
paradigm—a style of building the structure and elements of
computer programs—that treats computation as the evaluation of
mathematical functions and avoids changing-state and mutable
data. It is a declarative programming paradigm, which means
programming is done with expressions[1] or declarations[2] instead
of statements.

- Wikipedia, https://en.wikipedia.org/wiki/Functional_programming

 Programming where your entire program is a single referentially
transparent expression composed of other referentially transparent
expressions. No side effects. No mutability. No global mutable state.

- Runar Bjarnason (Functional programmer, @runarorama)

What is FP?

https://en.wikipedia.org/wiki/Functional_programming

Is PHP functional?

 PHP is :

 Imperative in nature

 Structural (procedural)

 Partly object-oriented since PHP 3

What is functional PHP?

 PHP 5.3 … 7.1

 Anonymous functions (lambda functions)

 Generators (infinite lists)

 Functors (not real FP functors though!)

 Anonymous classes

 Variadics

 PHP 7’s strict mode

What is functional PHP?

 Functional PHP libraries

 lstrojny/functional-php

 phpoption/phpoption

 widmogrod/php-functional

 qaribou/immutable.php

 etc.

Most functional programming
patterns and properties are

available in PHP!

What is functional PHP?

Functional programming properties

 Pure functions and referential transparency

 Immutability

 First-class citizen functions

 Higher-order functions

 Function composition (currying)

FP Properties

FP Properties

Pure functions

 Same input, same output

 Evaluation does not cause an

observable side effect or output

(modifying out of scope variables

or any other interaction with I/O

devices for example)

// pure function

function addTwo (int $value) : int

{

return $value + 2;

}

// two side-effects

function addTwo (int $value)

{

global $value = $value + 2;

echo $value;

}

FP Properties

Referential transparency

 Functional expressions and values

must be interchangeable

function addTwo (int $value) : int

{

return $value + 2;

}

4 === addTwo(2); // Interchangeable

function addRandom (int $value) : int

{

return $value + rand();

}

? === addRandom(2); // NOT!

FP Properties

Immutability

 A variable must not change its

value in order to avoid changing

the application’s state from

beginning to end of its runtime

 RFC for PHP 7.2 (immutable

objects)

https://wiki.php.net/rfc/immutability

// Global scope – the right way

$value2 = $value + 1;

// Global scope – the wrong way

$value++;

FP Properties

First-Class Citizen Functions

 Functions must be considered just like any other data type.

 This allows:

 Higher-order functions whereby functions can be passed to and returned by

other functions;

 Function composition whereby functions can be combined in order to

dynamically generate new functions.

FP Properties

function sum($carry, $item)

{

$carry += $item;

return $carry;

}

$total = array_reduce($array, ‘sum’);

Higher-order functions (passing functions)

FP Properties

function curryAdd($a)

{

return function ($b) use ($a) {

return $b + $a;

};

}

$curryAdd2 = curryAdd(2);

$curryAdd3 = curryAdd(3);

$value = $curryAdd2(3); // 5

$value2 = $curryAdd3(3); // 6

Higher-order functions (returning functions and currying)

Functional programming patterns

FP Patterns

 Higher-order function that allows

us to map a callback to each

element of a collection

MAP

$array = [1, 2, 3];

$newArr = array_map(‘addTwo’, $array);

// $newArr === [3, 4, 5];

FP Patterns

 Higher-order function that allows

us to distinguish and keep only

certain elements of a collection

based on a Boolean predicate

FILTER

$array = [1, 2, 3];

$newArr = array_filter($array , ‘odd’);

// $newArr = [1, 3];

FP Patterns

 Higher-order function that allows

us to combine elements of a

collection into a single returned

value based on a combining

function

REDUCE

$array = [1, 2, 3];

$value = array_reduce($array , ‘sum’);

// $value === 6

Let’s look at some code!

Now your code is

pure!

Let’s all go home !

But wait!

I’m trying to do a « Hello

World » program in a

functional programming

style without losing

referential transparency

and purity…

Simple!

Just get rid of the world!

Then, no need to say

hello, right?

Let’s find a more viable solution!

In FP, we can use « monads » to

interact with the world while preserving

purity and referential transparency

What are monads

Monads are a way to encapsulate values that will

remain unknown until runtime while still allowing us

to use them as mappables.

What are monads

Functors

 Pattern allowing us to map a

function to one or more wrapped

values

interface Functor

{

public function map(callable $f) : Functor;

}

What are monads

Applicative

 Pattern allowing us to map a

wrapped function to one or more

wrapped values

Let’s not and say we did… :-)

Ref. :

Functional Programming in PHP

by Simon Holywell

https://www.functionalphp.com/

What are monads

Monad

 Pattern allowing us to map a

wrapped function that returns a

monad of the same type as itself to

one or more wrapped values

abstract class Monad

{

protected $value = null;

public function __construct($value) {

$this->value = $value;

}

public static function pack($value) {

return new static($value);

}

public function map(callable $function) {

return $function($this->value);

}

}

The future is now !

Takeaways

 Try replacing if-else structures, while loops, switches with FP patterns as much as
possible

 Make all dependencies explicit in your function signatures and avoid setter
injection

 Create new variables, don’t modify existing ones (clone objects)

 Using Zend Framework, Symphony or Laravel?

 Try containing your side-effects within your controllers

 Isolate your pure computational code within services and entities

 Create a Doctrine repository in order to encapsulate results in Maybe monads

 Avoid using façades (Laravel)

 Using Drupal?

 Isolate impure code in the main module file

 Using Wordpress?

 Create many files for your plugins and isolate the impure code in one main file

References

 Functional PHP, Gilles Crettenand

https://www.packtpub.com/application-development/functional-php

 Functional Programming in PHP, Second Edition, Simon Holywell

https://www.functionalphp.com/

 Clean Coder, Robert C. Martin (Uncle Bob)

Mr. Martin will be in Montreal, May 17-18

https://sites.google.com/site/unclebobconsultingllc/

https://www.packtpub.com/application-development/functional-php
https://www.functionalphp.com/
https://sites.google.com/site/unclebobconsultingllc/

Thank you!

https://joind.in/talk/3fbb6

Andrew Caya, ZCE, ZCA

@AndrewSCaya

https://ca.linkedin.com/in/andrewscaya

